Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Roxan U. Richards-Johnson, ${ }^{\text {a }}$ Ishenkumba A. Kahwa ${ }^{\mathrm{a} *}$ and Alan J. Lough ${ }^{\text {b }}$
${ }^{\text {a }}$ Chemistry Department, University of the West Indies, Mona Campus, Kingston 7, Jamaica, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6

Correspondence e-mail:

ikahwa@uwimona.edu.jm

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
Disorder in solvent or counterion
R factor $=0.033$
$w R$ factor $=0.082$
Data-to-parameter ratio $=17.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Aqua[$N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-tetrakis(2-hydroxyethyl)-1,4,7,10-tetrazacyclododecane- $\kappa^{4} N$]neodymium(III) tris(perchlorate) 1.25-hydrate

The asymmetric unit of the title structure, $\left[\mathrm{Nd}\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{3} \cdot 1.25 \mathrm{H}_{2} \mathrm{O}$, (I), contains two independent $\mathrm{Nd}^{\mathrm{III}}$ cations, six perchlorate anions and two and a half solvent water molecules. Compound (I) is a product of a program exploring the formation of polynuclear metallo-nanoclusters from oligomerization of aziridineethanol in the presence of lanthanide(III) salts. Under moderately acidic or basic solutions protonation of alcoholic sites is maintained and no oligomerization via bridging alcoholic sites is found. The crystal structure contains a three-dimensional network of $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The title compound, (I), was obtained from oligomerization of 1-aziridineethanol (H2) designed to produce polynuclear lanthanide(III) nanoclusters (Thompson et al., 2001). Oligomerization of 1 -aziridineethanol in the presence of lanthanide(III) salts usually results in a variety of mononuclear and polynuclear complexes (Thompson et al., 2003) of the dominant tetrameric product $\mathrm{H}_{4} \mathrm{~L}$ (Ham \& Krause, 1978), depending on the reaction conditions. In this case, oligomerization was allowed to proceed under strongly basic conditions in which insoluble hydroxides were deposited and the mixture filtered. When allowed to evaporate, the filtrate deposited crystals of (I) in about 15% yield.

(I)

There are two independent $\mathrm{Nd}^{\text {III }}$ complexes in the asymmetric unit, which are illustrated in Figs. 1 and 2. The asymmetric unit also contains six perchlorate anions and two and a half solvent water molecules. The propensity of Ln^{3+} ions in lanthanide(III) complexes of $\mathrm{H}_{4} \mathrm{~L}$ to achieve coordination number 9 is demonstrated by coordination of a water molecule to $\mathrm{Nd}^{\text {III }}$ (O5A and O5B). The absolute stereochemistry of chelate $\mathrm{H}_{4} \mathrm{~L}$ is $\Lambda(\lambda \lambda \lambda \lambda)$ for the chelate at $\mathrm{Nd} 1 A$, whereas it is $\Delta(\delta \delta \delta \delta)$ at Nd1B. However, the coordination polyhedra at both sites have distorted $C_{4 v}$ symmetry. Selected metal-oxy-

Received 7 October 2003
Accepted 13 October 2003
Online 23 October 2003

Figure 1

View of molecule A of (I), showing the labeling scheme and ellipsoids drawn at the 30% probability level. H atoms bonded to C atoms have been omitted.

Figure 2
View of molecule B of (I), showing the labeling scheme and ellipsoids drawn at the 30% probability level. H atoms bonded to C atoms have been omitted.
gen bond distances are given in Table 1. The three-dimensional $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding network in the crystal structure of (I) is illustrated in Fig. 3 and details of the geometry are given in Table 2. The crystal packing is illustrated in Fig. 4.

Experimental

Because of our preparative interest in nanoclusters, two solutions were used as follows. Solution $A: 10 \mathrm{ml}$ of a 0.39 M solution of NaOH was added dropwise to a vigorously stirring and boiling solution of $\mathrm{Nd}\left(\mathrm{ClO}_{4}\right)_{3} \cdot n \mathrm{H}_{2} \mathrm{O}(15.7 \mathrm{mmol})$ dissolved in 16 ml distilled water. The

Figure 3
View of the hydrogen bonding (dashed lines) in (I) corresponding to Table 2. Ellipsoids are drawn at the 30% probability level.

Figure 4
Packing diagram (Spek, 2003), viewed approximately along the a axis. Colour codes: green Nd, yellow Cl , red O , blue N , and black C . H atoms have been omitted for clarity.
volume of the mixture was reduced to about 5 ml and filtered. Solution B: $\mathrm{Nd}\left(\mathrm{ClO}_{4}\right)_{3}(1.1 \mathrm{mmol})$ was dissolved in 45 ml of a $3: 1$ acetonitrile-methanol solution and added dropwise ($2-3 \mathrm{~h}$) to 2 mmol 1 -aziridineethanol refluxing in 100 ml of the acetonitrilemethanol solution. Reflux was continued for 3 d , after which the volume of the solution was reduced to about 70 ml . Approximately 2.5 ml of solution A was dissolved in 20 ml of acetonitrile and added dropwise to the refluxing solution B. Reflux was continued for about one week, during which time a precipitate was deposited and filtered off; slow evaporation of the filtrate yielded purple needle-like crystals of (I) in ca 15% yield. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{40.50} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{NdO}_{18.25}$: C 23.1, H $4.9, \mathrm{~N} 6.7 \%$; found: C 22.23 , H 4.53 , N 6.47%.

Crystal data

$\left[\mathrm{Nd}\left(\mathrm{C}_{16} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{3} \cdot-$ $1.25 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=831.61$
Monoclinic, $P 2_{1} / c$
$a=17.3365$ (2) \AA
$b=20.7247$ (2) \AA
$c=17.8135(2) \AA$
$\beta=109.969(1)^{\circ}$
$V=6015.48(11) \AA^{3}$
$Z=8$
Data collection
Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.485, T_{\text {max }}=0.517$
60586 measured reflections
$D_{x}=1.837 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 13799 reflections
$\theta=2.6-27.5^{\circ}$
$\mu=2.08 \mathrm{~mm}^{-1}$
$T=150$ (1) K
Block, purple
$0.36 \times 0.32 \times 0.32 \mathrm{~mm}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.082$
$S=1.05$
13750 reflections
798 parameters
H atoms: see below

13750 independent reflections 11579 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-22 \rightarrow 22$
$k=-26 \rightarrow 26$
$l=-23 \rightarrow 21$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0246 P)^{2}\right.} \\
&+16.909 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=2.07 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.02 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters (A).

$\mathrm{Nd} 1 A-\mathrm{O} 1 A$	$2.448(2)$	$\mathrm{Nd} 1 B-\mathrm{O} 3 B$	$2.441(2)$
$\mathrm{Nd} 1 A-\mathrm{O} 4 A$	$2.455(2)$	$\mathrm{Nd} 1 B-\mathrm{O} 1 B$	$2.445(2)$
$\mathrm{Nd} 1 A-\mathrm{O} 3 A$	$2.475(2)$	$\mathrm{Nd} 1 B-\mathrm{O} 2 B$	$2.446(2)$
$\mathrm{Nd} 1 A-\mathrm{O} 2 A$	$2.477(2)$	$\mathrm{Nd} 1 B-\mathrm{O} 4 B$	$2.467(2)$
$\mathrm{Nd} 1 A-\mathrm{O} 5 A$	$2.520(3)$	$\mathrm{Nd} 1 B-\mathrm{O} 5 B$	$2.566(2)$
$\mathrm{Nd} 1 A-\mathrm{N} 2 A$	$2.684(3)$	$\mathrm{Nd} 1 B-\mathrm{N} 4 B$	$2.679(3)$
$\mathrm{Nd} 1 A-\mathrm{N} 4 A$	$2.687(3)$	$\mathrm{Nd} 1 B-\mathrm{N} 2 B$	$2.688(3)$
$\mathrm{Nd} 1 A-\mathrm{N} 1 A$	$2.696(3)$	$\mathrm{Nd} 1 B-\mathrm{N} 3 B$	$2.692(3)$
$\mathrm{Nd} 1 A-\mathrm{N} 3 A$	$2.700(3)$	$\mathrm{Nd} 1 B-\mathrm{N} 1 B$	$2.692(3)$

Table 2
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 1 W$	0.95	1.77	2.707 (3)	170
$\mathrm{O} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 3 W$	0.95	2.42	3.100 (3)	128
$\mathrm{O} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 10 S^{\text {i }}$	0.95	2.05	2.827 (5)	138
$\mathrm{O} 2 A-\mathrm{H} 2 A \cdots \mathrm{O} 24 S^{\mathrm{ii}}$	0.95	1.99	2.848 (4)	150
$\mathrm{O} 2 B-\mathrm{H} 2 B \cdots \mathrm{O} 2 W$	0.95	1.70	2.648 (4)	172
$\mathrm{O} 3 A-\mathrm{H} 3 A \cdots \mathrm{O} 13 S^{\text {iii }}$	0.95	2.18	3.096 (5)	163
$\mathrm{O} 3 A-\mathrm{H} 3 A \cdots \mathrm{O} 14 S^{\text {iii }}$	0.95	2.19	2.916 (4)	132
$\mathrm{O} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 1 S$	0.95	1.92	2.792 (4)	151
$\mathrm{O} 5 A-\mathrm{H} 5 \mathrm{O} A \cdots \mathrm{O} 1 W$	0.84	1.91	2.718 (4)	162
$\mathrm{O} 5 A-\mathrm{H} 5 \mathrm{O} B \cdots \mathrm{O} 13 \mathrm{~S}^{\text {iii }}$	0.84	2.14	2.923 (4)	156
$\mathrm{O} 5 B-\mathrm{H} 5 \mathrm{O} D \cdots \mathrm{O} 2 \mathrm{~W}$	0.84	2.19	2.957 (5)	151
$\mathrm{O} 5 B-\mathrm{H} 5 \mathrm{O} D \cdots \mathrm{O} 3 W$	0.84	2.12	2.741 (7)	130
$\mathrm{O} 3 B-\mathrm{H} 3 B \cdots \mathrm{O} 11 S$	0.95	1.88	2.750 (4)	150
$\mathrm{O} 4 B-\mathrm{H} 4 B \cdots \mathrm{O} 3 S$	0.95	1.83	2.746 (3)	163
O5B-H5OC.. ${ }^{4} 4$	0.84	2.15	2.980 (4)	172
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 20 S$	0.84	1.98	2.811 (4)	172
O1W-H1WB $\cdots \mathrm{O} 16 \mathrm{~S}$	0.84	2.06	2.825 (4)	152
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 6 \mathrm{~S}$	0.84	2.00	2.838 (6)	175
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 23 S$	0.84	2.15	2.936 (5)	155
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots \mathrm{O} 8$	0.84	2.07	2.912 (5)	180
$\mathrm{O} 3 W-\mathrm{H} 3 W B \cdots \mathrm{O} 5$	0.84	2.46	2.971 (8)	120
$\mathrm{O} 3 W-\mathrm{H} 3 W A \cdots \mathrm{O} 9 S^{\text {i }}$	0.84	2.00	2.844 (7)	180

[^0]H atoms bonded to C atoms, as well as the H atoms of the hydroxyl groups ($\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3$ and O 4), were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ distances of $0.99 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of $0.95 \AA$. They were included in the refinement in riding-model approximation, with $U_{\text {iso }}=$ $1.2 U_{\text {eq }}$ of the carrier atom. H atoms bonded to the O atoms of coordinated (O5) and solvent water molecules ($\mathrm{O} 1 W$ and $\mathrm{O} 2 W$) were refined independently with isotropic displacement parameters, but the $\mathrm{O}-\mathrm{H}$ distances were restrained to be $0.840(1) \AA$. The intramolecular $\mathrm{H} \cdots \mathrm{H}$ distances of both solvent water molecules were restrained to be the same. The H atoms of the half-occupancy water molecule $(\mathrm{O} 3 W)$ were placed in calculated positions so as to give sensible hydrogen-bonding geometry, but their coordinates were not refined; $U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{O} 3 W)$. The highest peak in the final difference Fourier map was $1.12 \AA$ from O5S. However, the perchlorate anion containing O5S was not considered to be disordered despite some O atoms having relatively high anisotropic displacement parameters. A similar situation was observed for perchlorate $\mathrm{Cl} 3(\mathrm{O} 9 S-\mathrm{O} 12 S)$. The deepest hole was $0.81 \AA$ from $\mathrm{Nd} 1 B$.

Data collection: COLLECT (Nonius, 1997-2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2001); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the Board for Graduate Studies and Research University of the West Indies for supporting the work. The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Ham, G. E. \& Krause, R. L. (1978). Patent No. Usp 4093615 (Cl.260-239BC; Co7D255/02), June 6.
Nonius (1997-2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.12 for Windows NT. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thompson, M. K., Lough, A. J., White, A. J. P., Williams, D. J. \& Kahwa, I. A. (2003). Inorg. Chem. 42, 4828-4811.

Thompson, M. K., Vuchkov, M. \& Kahwa, I. A. (2001). Inorg. Chem. 40, 43324341.

[^0]: Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $1+x, y, z$; (iii) $x, \frac{1}{2}-y, z-\frac{1}{2}$.

